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Why formal theories of truth & modality?

Solutions to the liar paradox and other paradoxes

Truth and consequence: What can one actually do with a truth
predicate conceived, e.g., as a device of disquotation?
In particular, is truth a substantial notion that allows one new
insights into non-semantic issues?
Is truth always founded in non-semantic facts?
Reduction: parts of mathematics can be reduced to a theory of
truth; the proof-theoretic strength of truth theories
formal framework for thinking about truth and modalities



Why formal theories of truth & modality?

Solutions to the liar paradox and other paradoxes
Truth and consequence: What can one actually do with a truth
predicate conceived, e.g., as a device of disquotation?

In particular, is truth a substantial notion that allows one new
insights into non-semantic issues?
Is truth always founded in non-semantic facts?
Reduction: parts of mathematics can be reduced to a theory of
truth; the proof-theoretic strength of truth theories
formal framework for thinking about truth and modalities



Why formal theories of truth & modality?

Solutions to the liar paradox and other paradoxes
Truth and consequence: What can one actually do with a truth
predicate conceived, e.g., as a device of disquotation?
In particular, is truth a substantial notion that allows one new
insights into non-semantic issues?

Is truth always founded in non-semantic facts?
Reduction: parts of mathematics can be reduced to a theory of
truth; the proof-theoretic strength of truth theories
formal framework for thinking about truth and modalities



Why formal theories of truth & modality?

Solutions to the liar paradox and other paradoxes
Truth and consequence: What can one actually do with a truth
predicate conceived, e.g., as a device of disquotation?
In particular, is truth a substantial notion that allows one new
insights into non-semantic issues?
Is truth always founded in non-semantic facts?

Reduction: parts of mathematics can be reduced to a theory of
truth; the proof-theoretic strength of truth theories
formal framework for thinking about truth and modalities



Why formal theories of truth & modality?

Solutions to the liar paradox and other paradoxes
Truth and consequence: What can one actually do with a truth
predicate conceived, e.g., as a device of disquotation?
In particular, is truth a substantial notion that allows one new
insights into non-semantic issues?
Is truth always founded in non-semantic facts?
Reduction: parts of mathematics can be reduced to a theory of
truth; the proof-theoretic strength of truth theories

formal framework for thinking about truth and modalities



Why formal theories of truth & modality?

Solutions to the liar paradox and other paradoxes
Truth and consequence: What can one actually do with a truth
predicate conceived, e.g., as a device of disquotation?
In particular, is truth a substantial notion that allows one new
insights into non-semantic issues?
Is truth always founded in non-semantic facts?
Reduction: parts of mathematics can be reduced to a theory of
truth; the proof-theoretic strength of truth theories
formal framework for thinking about truth and modalities



Concepts I’m interested in

truth

necessity
analyticity
a priori
knowledge
future and past truth

I’ll focus mainly on truth but many remarks can generalised.



Concepts I’m interested in

truth
necessity

analyticity
a priori
knowledge
future and past truth

I’ll focus mainly on truth but many remarks can generalised.



Concepts I’m interested in

truth
necessity
analyticity

a priori
knowledge
future and past truth

I’ll focus mainly on truth but many remarks can generalised.



Concepts I’m interested in

truth
necessity
analyticity
a priori

knowledge
future and past truth

I’ll focus mainly on truth but many remarks can generalised.



Concepts I’m interested in

truth
necessity
analyticity
a priori
knowledge

future and past truth

I’ll focus mainly on truth but many remarks can generalised.



Concepts I’m interested in

truth
necessity
analyticity
a priori
knowledge
future and past truth

I’ll focus mainly on truth but many remarks can generalised.



Concepts I’m interested in

truth
necessity
analyticity
a priori
knowledge
future and past truth

I’ll focus mainly on truth but many remarks can generalised.



�e predicate and operator analyses

Modal notions such as necessity can be formalised as (sentential)
operators or as predicates.

Necessity is formalised as an operator in modal logic; truth is usually
treated as a predicate.
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�e operator analysis

‘It is necessary that’ is conceived as an operator or adverbial phrase:
combined with a sentence it gives another sentence.

It is necessary that
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

operator, adverb

water is H2O
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sentence

.

According to the Operator Analysis sentences with ‘that’ can be parsed
into an operator (or adverbial phrase) and a sentence.

In English ‘necessarily’ is an adverb acting in this way.

In modal logic necessity is conceived as the sentential operator ◻: If φ is
a sentence ◻φ is also a sentence.

�at
±

fpoo
snow is white
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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is true
²
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Ontological commitment

According to the predicate analysis, ‘that’-sentences and similar
constructions are singular terms denoting objects (propositions or
sentences).

�erefore the predicate analysis commits one to an ontology of objects
that can be necessary, analytic, be known etc.
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Advantages of the operator analysis

1 �ere is no ontological commitment to objects that can be
necessary or analytic.

2 Paradoxes of modal predicates are avoided.
3 Paradoxes arising from the interaction of modal predicates are
avoided.

4 Modal logic and its possible worlds semantics can be retained as
the main tool in the theory of modalities.
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�e quanti�cation problem

�e advantages of the operator analysis
Quanti�ed claims such as the following cannot be expressed without
nasty ploys on the Operator Analysis:

All laws of nature are necessary.

Some necessary propositions are not analytic.
John has a true a posteriori belief.

On the predicate account of modalities, in contrast, these sentences can
readily be formalized

∀x(Law(x)→ Nx)
∃x(N(x) ∧ ¬Ax)
∃x(Bvx ∧ Tx ∧ Apost(x))

Quanti�ed statements of this kind are of particular interest to the
philosopher.
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�e predicate

�e predicate and the operator analysis may be compatible in the end.
Halbach and Welch (2009) proposed a reduction of predicates to
operators using a truth predicate.

Here I will stick to the predicate analysis. It gives greater expressive
power, but yields also paradoxes.
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Paradoxes of modal predicates

Montague’s (1963) Paradox
If analyticity is conceived as predicates of sentences, then the following
assumptions are inconsistent on the basis of a weak syntax theory.

1 axioms: If ‘A’ is analytic, then A.
2 rule of inference: If ‘A’ has been proved, one may infer
‘ “A” is analytic.’

�e same paradox applies to necessity, a prioricity etc.

If analyticity is conceived as a predicate of propositions, the theory of
syntax is replaced by a theory of propositions, which may prove the
diagonal lemma.
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Paradoxes from interactions of modal predicates

One might hope to solve Montague’s paradox by typing the modal
predicates; this move blocks Montague’s paradox.

‘Necessity–analyticity paradox’
�e following axioms and rules are inconsistent with a basic theory of
syntax:

If ‘A’ is analytic, then A (where A does not contain ‘analytic’)
rule of inference: If ‘A’ has been proved, one may infer ‘ “A” is
analytic.’ (where A does not contain ‘analytic’)
If ‘A’ is necessary, then A (where A does not contain ‘necessary’)
rule of inference: If ‘A’ has been proved, one may infer ‘ “A” is
necessary.’ (where A does not contain ‘necessary’)



Philosophical decisions

Truth may be taken to be applying to any kind of objects (sentences as
types or tokens, propositions. . . ) as long as these objects have the
structure of sentence types.

I will take truth to apply to sentences of a �xed formal language only,
but not to ‘foreign’ sentences.

I’ll emphasize the axiomatic approach.�is is not to say that truth
cannot be de�ned in terms of correspondence etc.
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�ere is something �shy about the liar paradox:

(1) (1) is not true.

Somehow the sentence ‘says’ something about itself, and when people
are confronted with the paradox for the �rst time, they usually think
that this feature is the source of the paradox.



Self-reference

However, there are many self-referential sentence that are completely
unproblematic:

(2) (2) contains 5 occurences of the letter ‘c’.

If (1) is illegitimate because of its self-referentiality, then (2) must be
illegitimate as well. Moreover, the e�ect that is achieved via the label ‘(1)’
can be achieved without this device. At the same time one can dispense
with demonstratives like ‘this’ that might be used to formulate the liar
sentence:

�is sentence is not true.

In fact, the e�ect can be achieved using weak arithmetical axioms only.
And the axioms employed are beyond any (serious) doubt.�is was
shown by Gödel.



Arithmetic

�e approach via arithmetic is indirect. Arithmetic talks about numbers,
not about sentences. Coding sentences and expressions by numbers
allows to talk about the numerical codes of sentences and therefore
arithmetic is indirectly about sentences.

My approach here avoids this detour via numbers. I present a theory of
expressions that is given by some (hopefully) obvious axioms on
expressions.�e trick (diagonalization) that is then used for obtaining a
self-referential sentence is the same as in the case of arithmetic.
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Self-reference

Self-reference might look like a pathological phenomenon causing work
for philosophical logicians only, which bears little interest elsewhere.
Self-reference, however, has not only ‘detrimental’ applications as in the
liar paradox, but also mathematical useful applications as in the proof
of the Recursion�eorem (see, e.g., Rogers (1967)).

�erefore most logicians agree nowadays that it is not self-reference that
causes trouble in (1), but rather the truth predicate.�e initial
impression was wrong: not self-reference is to be blamed for the
paradox but rather our concept of truth.
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�e alphabet

In the following I describe a language L. An expression of L is an
arbitrary �nite string of the following symbols. Such strings are also
called expressions of L.

De�nition
�e symbols of L are:

1 in�nitely many variable symbols v, v1, v2, v3,. . .
2 predicate symbols = and N ,
3 function symbols q,⌢and sub,
4 the connectives ¬,→ and the quanti�er symbol ∀,
5 auxiliary symbols ( and ),
6 possibly �nitely many further function and predicate symbols, and
7 If e is a string of symbols then e is also a symbol. e is called a
quotation constant.

All the mentioned symbols are pairwise di�erent.



Notational conventions

In the following I shall use x, y and z as (meta-)variables for variables:
�us x may stand for any symbol v, v1, v2, . . . It is also assumed that x, y
etc stand for di�erent variables. Moreover, it is always presupposed
variable clashes are avoided by renaming variables in a suitable way.

It is important that a is a single symbol and not a string of more than
one symbols even if a itself is a string built from several symbols.

A string of symbols of L is any string of the above symbols. Usually I
suppress mention of L.�e empty string is also a string.
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Terms

We shall now de�ne the notions of a term and of a formula of L.

De�nition
�e L-terms are de�ned as follows:

1 All variables are terms.

2 If e is a string of symbols, then e is a term.
3 If t, r and s are terms, then q(t), (s⌢t), sub(r, s, t) are terms, and
similarly for all further function symbols
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�e empty string

Since the empty string is a string of symbols is a term. Since looks so
odd, I shall write 0 for . From an ontologically point of view the empty
string is a weird thing. One might be inclined to say that it is not
anything. I have only a pragmatic excuse for assuming the empty string:
it is useful, though not indispensable.

What the empty string is for the expressions is the number zero for the
natural numbers. It is not hard to see that 0 is useful in number theory.
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Formulæ

Formulæ, sentences, free and bound occurrences of variables are
de�ned in the usual way.

Example
1 ∀v3(v3 = ∧∀ ∧ Nv3) is a sentence.
2 v12 = ¬N¬ is a sentence, i.e., the formula does not feature a free
variable.

�e predicate symbol N can be read as necessity, truth, or still
something else.



Non-linearity

Remark
�e reason for overlining expressions e rather than to include them in
quotation marks like this ⌜e⌝ is not a stylistic one. ⌜v⌝⌜v⌝may be parsed
in the following two ways:

ª

⌜v⌝
ª

⌜v⌝
´¹¹¹¹¸¹¹¹¹¹¶

On the �rst reading indicated by the parentheses above, the expression
if of the form s⌢t; on the second reading it is an atomic term ⌜. . .⌝. If
quotations are marked by overlining the quoted strings, this ambiguity
does not arise.



A theory of expressions

�e theoryA which will be described in this section is designed in
order to obtain smooth proofs in the following. I have not aimed at a
particularly elegant axiomatization.

A simple intended model of the theory has all expressions of L as its
domain.�e intended interpretation of the function symbols will
become clear from the axioms A1–A4 except for the interpretation of
sub. I shall return to sub below.



A theory of expressions

�e theoryA which will be described in this section is designed in
order to obtain smooth proofs in the following. I have not aimed at a
particularly elegant axiomatization.
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�e axioms

All instances of the following schemata and rules are axioms of the
theoryA:

De�nition

A1 all axioms and rules of �rst-order predicate logic including the
identity axioms.

A2 a⌢b = ab, where a and b are arbitrary strings of symbols.

A3 q(a) = a

A4 sub(a, b, c) = d, where a and c are arbitrary strings of symbols, b is
a single symbol (or, equivalently, a string of symbols of length 1),
and d is the string of symbols obtained from a by replacing all
occurrences of the symbol b by the strings c.



�e axioms

De�nition

A5 ∀x∀y∀z((x⌢y)⌢z) = (x⌢(y⌢z))

A6 ∀x∀y(x⌢y = 0→ x = 0 ∧ y = 0)

A7 ∀x∀y(x⌢y = x ↔ y = 0) ∧ ∀x∀y(y⌢x = x ↔ y = 0)

A8 ∀x1∀x2∀y∀z(sub(x1, y, z)⌢sub(x2, y, z)) = sub(x1⌢x2, y, z)

A9 ¬a = b, if a and b are distinct expressions.
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Comments

A1-A4 describe the functions of concatenation, quotation and
substitution by providing function values for speci�c entries. From
these axioms one cannot derive (non-trivial) universally quanti�ed
principles and therefore axioms like the associative law for⌢A5 are not
derivable from A1–A4.



Comments

�e concatenation of two expressions e1 and e2 is simply the expression
e1 followed by e2. For instance, ¬¬v is the concatenation of ¬ and ¬v.

�erefore ¬¬v = ¬⌢¬v is an instance of A2 as well as ¬¬v = ¬¬⌢v.

Concatenating the empty string with any expression e gives again the
same expression e.�erefore we have, for instance, ∀⌢0 = ∀ as an
instance of A2.
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Comments

An instance of A3 is the sentence qv¬ = v¬.�us q describes the
function that takes an expression and returns its quotation constant.



Comments

In A4 I have imposed the restriction that b must be a single symbol.
�is does not imply that the substitution function cannot be applied to
complex expressions; just A4 does not say anything about the result of
substituting a complex expression.

�e reason for this restriction is that the result of substitution of a
complex strings may be not unique. For instance, the result of
substituting ¬ for ∧∧ in ∧ ∧ ∧might be either ∧¬ or ¬∧.�e problem
can be �xed in several ways, but I do not need to substitute complex
expressions in the following.�erefore I do not ‘solve’ the problem but
avoid it by the restriction of b to a single symbol.
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Comments

A1-A4 are already su�cient for proving the diagonalization�eorem 13.

A5 simpli�es the reasoning with strings a great deal. Since
A ⊢ (x⌢y)⌢z = x⌢(y⌢z), that is,⌢ is associative by A5, I shall simply
write x⌢y⌢z. for the sake of de�niteness we can stipulate that x⌢y⌢z is
short for (x⌢y)⌢z and similarly for more applications of⌢.
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Comments

A6–A8 will only be invoked in the section on arithmetic.

A6 tells us that is either a or b is not the empty expression then the
concatenation of a and b is non-empty as well.

A7 postulates that only the empty string does not change an object if it
is concatenated with this object.
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Comments

In the following I shall need only the following instantiation of A8:

∀x1∀x2∀z(sub(x1, v, z)⌢sub(x2, v, z)) = sub(x1⌢x2, v, z)

I just thought that the universally quanti�ed version looks less ad hoc.

�e variable y is not restricted to single symbols, mostly. So A8 claims
that if the problem of the uniqueness of the result of substituting
complex expressions is solved, then the following holds:�e result of
concatenating the result of substituting c for b in a1 with the result of
substituting c for b in a2 is the same as the result of substituting c for b
in a1⌢a2.
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Comments

I writeA ⊢ φ if and only if the formula φ is a logical consequence of the
theoryA.

Example
A ⊢ sub(¬¬,¬,¬¬¬) = ¬¬¬¬¬¬

Example

A ⊢ sub(v = v ∧ v = v, v, v2) = v2 = v2 ∧ v = v
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Comments

�ese axioms su�ce for proving Gödel’s celebrated diagonalization
lemma.

Remark
Of course, there is no such cheap way to Gödel’s theorems. Gödel
showed that the functions sub and q (and further operations) can be
de�ned in an arithmetical theory for numerical codes of expressions. To
this end he proved that all recursive functions can be represented in a
�xed arihmetical system. And then he proved that the operation of
substitution etc. are recursive.�is requires some work and ideas.



Diagonalization

�e diagonalization function dia is de�ned in the following way:

De�nition
dia(x) = sub(x , v, q(x))

Remark
�ere are at least two ways to understand the syntactical status of dia. It
may be considered an additional unary functionof L, and the above
equation is then an additional axiom ofA. Alternatively, one can
conceive dia as a metalinguistic abbreviation, which does not form part
of the language L, but which is just short notation for a more complex
expression.�is situation will encountered in the following frequently.
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A lemma

Lemma
Assume φ(v) is a formula not containing bound occurrences of v.�en
the following holds:

A ⊢ dia(φ(dia(v))) = φ(dia(φ(dia(v))))

Proof.
InA the following equations can be proved::

dia(φ(dia(v))) = sub(φ(dia(v)), v, q(φ(dia(v))))

= sub(φ(dia(v)), v, φ(dia(v)))

= φ(dia(φ(dia(v))))

⊣
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�e diagonal lemma

�eorem (diagonalization)

If φ(v) is a formula of L with no bound occurrences of v, then one can
�nd a formula γ such that the following holds:

A ⊢ γ ↔ φ(γ)

Proof.

Choose as γ the formula φ(dia(φ(dia(v))).�en one has by the
previous Lemma:

A ⊢ φ(dia(φ(dia(v)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

γ

↔ φ(φ(dia(φ(dia(v))))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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)
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Inconsistency

I shall prove the inconsistency of some theories with the theoryA.
‘inconsistent’ always means ‘inconsistent withA’.

Since I did not �x the axioms ofA and admitted further axioms inA,
inconsistency results can be formulated in two ways. One can either say
‘A is inconsistent if it contains the sentence ψ’ or one says ‘ψ is
inconsistent withA’.
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�e T-scheme

�e �rst inconsistency result is the famous liar paradox. It is plausible to
assume that a truth predicate N for the language L satis�es the
T-scheme

(3) Nψ ↔ ψ

for all sentences ψ of L.�is scheme corresponds to the scheme
‘A’ is true if and only if A,

where A is any English declarative sentence.



�e liar inA

�eorem (liar paradox)

�e T-scheme Nψ ↔ ψ for all sentences ψ of L is inconsistent.

Proof.
Apply the diagonalization theorem 13 to the formula ¬Nv.�en
theorem 13 implies the existence of a sentence γ such that the following
holds: A ⊢ γ ↔ ¬Nγ. Together with the instance Nγ ↔ γ of the
T-scheme this yields an inconsistency. γ is called the ‘liar sentence’. ⊣
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Tarski’s theorem

Since the scheme is inconsistent such a truth predicate cannot be
de�ned inA, unlessA itself is inconsistent.

Corollary (Tarski’s theorem on the unde�nability of truth)
�ere is no formula τ(v) such that τ(ψ)↔ ψ can be derived inA for all
sentences ψ of L, ifA is consistent.

Proof.
Apply the diagonalization theorem 13 to τ(v) as above. If τ(v) contains
bound occurrences of v they can be renamed such that there are no
bound occurrences of v. ⊣



Tarski’s theorem

Since the scheme is inconsistent such a truth predicate cannot be
de�ned inA, unlessA itself is inconsistent.

Corollary (Tarski’s theorem on the unde�nability of truth)
�ere is no formula τ(v) such that τ(ψ)↔ ψ can be derived inA for all
sentences ψ of L, ifA is consistent.

Proof.
Apply the diagonalization theorem 13 to τ(v) as above. If τ(v) contains
bound occurrences of v they can be renamed such that there are no
bound occurrences of v. ⊣



�e scope of Tarski’s theorem

It is not so much surprising that the axioms listed explicitly in
De�nition 5 do not allow for a de�nition of such truth predciate τ(v).
According to De�nition 5, however,Amay contain arbitrary additional
axioms.�us Tarski’s�eorem says that adding axioms toA that allow
for a truth de�nition rendersA inconsistent.



Extending the language

Nevertheless one can add a new predicate symbol which is not in L, and
add True ψ ↔ ψ as an axiom scheme for all sentences of L. In this case
φ cannot contain the symbol True and the diagonalization theorem 13
does not apply to True v because it applies only to formulæ φ(v) of L.

�eorem
Assume that the language L is expanded by a new predicate symbol True
and all sentences Trueψ ↔ ψ (for ψ a sentence of L) are added toA.�e
resulting theory is consistent ifA is consistent.
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�e theory of disquotation

Call the theoryA plus all these equivalences TB.�us TB is given by
the following set of axioms:

A ∪ {True ψ ↔ ψ ∶ ψ a sentence of L}



�e proof

�e idea for the proof is due to Tarski.

I shall show that a given proof of a contradiction � in the theory TB can
be transformed into a proof of � inA. In the given proof only �nitely
many axioms with True can occur; let

True ψ0 ↔ ψ0, True ψ1 ↔ ψ1, . . . True ψn ↔ ψn

be these axioms. τ(v) is the following formula of the language L:

(v = ψ0 ∧ ψ0) ∨ (v = ψ1 ∧ ψ1) ∨ . . . (v = ψn ∧ ψn)

Obviously one has
τ(ψ0)↔ ψ0

and similarly for all ψk (k ≤ n).

Now replace everywhere in the given proof any formula True t, where t
is any arbitrary term, by τ(t) and add above any former axiom
True ψk ↔ ψk a proof of τ(ψk)↔ ψk , respectively.�e resulting
structure is a proof inA of the contradiction �.
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Conservativity

�e proof establishes a stronger result: Adding the T-sentences

True ψ ↔ ψ

(ψ a sentence without True ) toA yields a conservative extension ofA:

�eorem
TB is conservative overA.�at is, If φ is a sentence without True that is
provable in TB, then φ is already provable inA only.

Proof.
Just replace � by φ in the proof above. ⊣

�e proof shows that these T-sentences do not allow to prove any new
‘substantial’ insights. Works also with full induction.
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Conservativity over logic

�e T-sentences are not conservative over pure logic.�e T-sentences
prove that there are at least two di�erent objects:

True ∀ = ∀↔ ∀ = ∀ T-sentence

∀ = ∀ tautology

True ∀ = ∀ two preceding lines

True ¬∀ = ∀↔ ¬∀ = ∀ T-sentence

¬True ¬∀ = ∀

∀ = ∀ /= ¬∀ = ∀



Tarski on TB

(Tarski, 1935, p. 256) proves the consistency result for TB, and one
should expect that the resulting theory is attractive because it satis�es
Convention T, but Tarski says:

�e value of the result obtained is considerably diminished by the fact that
the axioms mentioned in�. III have a very restricted deductive power. A
theory of truth founded on them would be a highly incomplete system,
which would lack the most important and most fruitful general theorems.
Let us show this in more detail by a concrete example.
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Tarski on TB

Consider the sentential function ‘x∈Tr or x∈Tr’. [“∈ Tr” is the truth
predicate, “∈Tr” the negated truth predicate; “x” designates the negation
of “x”.] If in this function we substitute for the variable ‘x’
structural-descriptive names of sentences, we obtain an in�nite number of
theorems, the proof of which on the basis of the axioms obtained from the
convention T presents not the slightest di�culty.



Tarski on TB

But the situation changes fundamentally as soon as we pass to the
generalization of this sentential function, i.e. to the general principle of
contradiction. From the intuitive standpoint the truth of all those
theorems is itself already a proof of the general principle; this principle
represents, so to speak, an ‘in�nite logical product’ of those special
theorems. But this does not at all mean that we can actually derive the
principle of contradiction from the axioms or theorems mentioned by
means of the normal modes of inference usually employed. On the
contrary, by a slight modi�cation of�. III it can be shown that the
principle of contradiction is not a consequence (at least in the existing
sense of the word) of the axiom system described.



Tarski on TB

It seems Tarski admits here that Convention T is highly incomplete: a
good theory of truth should not only yield the T-sentences, it should
also yield the general principle of contradiction ‘For any sentence
(without True ) either the sentence or its negation is true.’

Perhaps Tarski thought that de�nitions of truth always yield the
generalisations, if they satisfy Convention T. But TB trivially provides a
de�nition of truth satisfying Convention T: one de�nes truth as True .

Later serious examples were proved: BG de�nes truth for the language
of ZF.�e truth de�nition satis�es Convention T, but it does not yield
the generalisation Tarski expects from a good de�nition of truth.
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More notation

In order to prove the result that TB doesn’t prove those generalisations,
I need more axioms.

Sent(x) is a unary predicate, ¬. a unary function symbol. I assume that
Sent(x) represents the property of being a sentence of L, ¬. represents
the function that takes a sentence and returns its negation:

Additional Axiom
A ⊢ Sent(φ) i� φ is a sentence of L.

Additional Axiom
A ⊢ ¬. φ = ¬φ
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No generalisations

I can now formulate and proof Tarski’s (and Gupta’s) complaint:

�eorem
TB /⊢ ∀x(Sent(x)→ (True x ∨ True ¬. x)) (assuming thatA is
consistent).



Proof

Assume otherwise.�en there is a proof of
∀x(Sent(x)→ (True x ∨ True ¬. x)) in from a �nite subtheory S of TB.
Only �nitely many T-sentences can be in S. Let

True ψ0 ↔ ψ0, True ψ1 ↔ ψ1, . . . , True ψn ↔ ψn

be these T-sentences. τ(v) is the following formula of the language L:

((v = ψ0∧ψ0)∨(v = ψ1∧ψ1)∨ . . . (v = ψn∧ψn))∧(v = ψ1∧ . . .∧v = ψn)

As above, True v can be interpreted as τ(v).

If χ is none of the ψ0, . . . ,ψn, we haveA ⊢ ¬τ(χ) ∧ ¬τ(¬. χ).
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Finite axiomatisability

Davidson made a big fuss about the following observation.

�eorem
TB is not �nitely axiomatisiable overA.

�at is, there is no sentence σ such thatA + σ proves the same
sentences as TB.

Let a proof of σ in TB be given. Replace the truth predicate again in
that proof by the partial truth predicate

((v = ψ0 ∧ ψ0) ∨ (v = ψ1 ∧ ψ1) ∨ . . . (v = ψn ∧ ψn))

�is shows that the truth predicate ofA + σ is de�nable inA already.
But by assumptionA + σ proves all T-sentences, and by Tarski’s
theorem this truth predicate cannot beA-de�nable.
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Philosophical moral

�e truth predicate of TB may have its merits: it allows one to
axiomatise certain generalisations �nitely Horwich (1998) Halbach
(1999). But it doesn’t prove the generalisations Tarski expected from a
decent theory of truth.

Moreover, TB has been criticised, because the object-/metalanguage
distinction seems to restrictive.
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Weakening the T-sentences

Forget about the ‘new’ truth predicate True . I return to our old
language L again, which contains already a truth predicate N .

�e next theorem is a strengthening of�eorem 14. For notions like
necessity one will not postulate axioms of the form Nψ ↔ ψ but only
that. However, one would expect a rule of necessitation to hold: once ψ
has been derived, one may conclude Nψ. With these weakened
assumptions on N the liar paradox can still be derived.
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Montague’s paradox

�eorem (Montague’s paradox (1963))

�e schema Nψ → ψ is inconsistent with the rule ψ
Nψ .

�e rule ψ
Nψ is called NEC in the following.

Proof.

γ ↔ ¬Nγ diagonalization

⊣
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�e schema Nψ → ψ is inconsistent with the rule ψ
Nψ .

�e rule ψ
Nψ is called NEC in the following.

Proof.
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Another formulation of the T-sentences

O�en the T-sentences ar stated in the following way:

Nψ ↔ ψ

where ψ must not contain N . It’s thought that this is safe. But I don’t
trust that formulation anymore.



How not to state the T-sentences

�eorem
Assume L contains a unary predicate symbol N (for necessity of some
kind, let’s say), and assume further:
T Nφ↔ φ for all sentences φ of L not containing N.
N1 Nφ → φ for all sentences φ of L not containing N.
N2 WheneverA ⊢ φ, then alsoA ⊢ Nφ for all sentences φ of L not

containing N.
�enA is inconsistent.



Proof

γ ↔ ¬NNγ diagonalisation

NNγ ↔ ¬γ
Nγ → ¬γ
Nγ → γ (N1)
¬Nγ two previous lines

¬NNγ T
γ �rst and last line
Nγ (N2)



How not to state the T-sentences

Usually it is thought that typing is a remedy to the paradoxes.�e
example shows that this works only as long as typing is not applied to
more than one predicate.

�e result is the �rst of various paradoxes (vulgo inconsistencies) that
arise from the interaction of predicates.
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‘Mixing’ the T-sentences with axiomatisations of other notions
such as necessity can lead to inconsistencies. So type restrictions
don’t solve all problems.
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Liberalising the type restriction

�ere have been various proposals to li� the type restrictions on the
T-sentences.

Motives:
Eg the following T-sentence looks ok:

‘‘Grass is red’ is not true’ is true i� ‘Grass is red’ is not true.

A more liberal approach might help to regain deductive power.
However, one seems to be caught between Scylla and Charybdis: the
typed truth predicate of TB is too weak, while the full unrestricted
T-schema is too strong.

It seems reasonable to steer between the two extremes in the middle. . .

But there are other creatures as horrifying as deductive weakness and
inconsistency, as McGee (1992) has demonstrated.
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Horwich’s proposal

[. . . ] we must conclude that permissible instantiations of the equivalence
schema are restricted in some way so as to avoid paradoxical results. [. . . ]
Given our purposes it su�ces for us to concede that certain instances of
the equivalence schema are not to be included as axioms of the minimal
theory, and to note that the principles governing our selection of excluded
instances are, in order of priority: (a) that the minimal theory not
engender ‘liar-type’ contradictions; (b) that the set of excluded instances
be as small as possible; and—perhaps just as important as (b)—(c) that
there be a constructive speci�cation of the excluded instances that is as
simple as possible. Horwich 1990 p. 41f



Maximal consistent instances of schema T

So the aim is to �nd a set of sentences Nφ↔ φ such that
�e set is consistent.

�e set is maximal, ie no further sentences of the form Nφ↔ φ
can be consistently added overA.
�e set is recursively enumerable (?).
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A ⊢ φ↔ (Nγ ↔ γ)

Proof.

A ⊢γ ↔ (Nγ ↔ φ) diagonalisation
A ⊢φ↔ (Nγ ↔ γ) propositional logic
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Maximal consistent instances of schema T

McGee’s observation spells disaster for Horwich’s proposal.

�eorem (McGee)
If a consistent set of T-sentences is recursive, it’s not maximal: by
Gödel’s �rst incompleteness theorem there will be an undecidable
sentence φ, which is equivalent to a T-sentence.

Maximal sets are too complicated.�ey can’t be Π01 or Σ
0
1 .

�ere are many, in fact uncountably many di�erent maximal
consistent sets of T-sentences (ifA is consistent).
Consistent sets of T-sentences can prove horrible results worse than
any inconsistency.
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How things can go wrong

Paradox is not the same as mere inconsistency: there are many ways
things can go wrong:

�e theory is inconsistent.

�e theory cannot be combined with another plausible theory. If a
theory of future cannot be combined with the analogous theory of
past truth, something is wrong.
�e theory is internally inconsistent: the theory proves that
everything is true.
�e theory proves a false claim in the base language (ie in the
language without the truth predicate).
�e theory has trivial models, eg, truth can be interpreted by the
empty set.
�e theory is ω-inconsistent.

Generally, consistency proofs are good, but a full proof-theoretic
analysis is better. Only such an analysis can prove that the theory
doesn’t contain any hidden paradoxes.
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�e constructive applications

On the next couple of slides I sketch some classical applications of
diagonalisation.

Many of them can be turned into ‘paradoxes’.
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Gödel’s �rst theorem

Ok, it isn’t Gödel’s incompleteness theorem, but it’s very similar in
structure:

�eorem (Gödel’s �rst theorem)
AssumeA ⊢ φ if and only ifA ⊢ Nφ holds for all sentences. �en there is
a sentence γ, such that neither γ itself nor its negation is derivable inA
except thatA itself is already inconsistent.



Proof

A ⊢γ ↔ ¬Nγ diagonalisation(4)
A ⊢γ assumption(5)
A ⊢Nγ NEC(6)
A ⊢¬Nγ (4)(7)
A ⊢¬γ assumption(8)
A ⊢Nγ (4)(9)
A ⊢γ CONEC(10)



�e liar again

�eorem
AssumeA ⊢ φ if and only ifA ⊢ Nφ holds for all sentences. �en the liar
sentence is undecidable inA, ifA is consistent.

�us if the T-schema is weakened to a rule, the liar sentence must be
undecidable.�us theories (such as KF) containing NEC and deciding
the liar sentence, cannot have CONEC.



�e real incompleteness theorem

Gödel showed that a provability predicate Bew(v) can be de�ned in a
certain system of arithmetic corresponding to our theoryA. more
precisely, he de�ned a formula Bew(v)

A ⊢ ψ if and only ifA ⊢ Bew(ψ)

holds for all formulæ ψ of L ifA is ω-consistent. ω-consistency is a
stronger condition than pure consistency.



A look at the second incompleteness theorem

�e ‘modal’ reasoning leading to the second incompleteness theorem
can be paraphrased inA.

�e second incompleteness theorem and Löb’s theorem have been used
to derive further paradoxes. I believe that most paradoxes involving
self-reference can be reduced to Löb’s theorem.

In particular, the incompleteness theorems yield more information on
weakenings of the T-scheme and ways to block Montague’s paradox.
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�e Löb derivability conditions

Let K be the following scheme:

(K) Nφ → ψ → (Nφ → Nψ)

4 is the following scheme:

(4) Nφ → NNφ

K4 contains NEC, K, 4 and all axioms ofA.K4 has been thought to be
adequate for necessity and, in some cases, for truth.

Remark
One can show that Gödel’s provability predicate satis�es K4. NEC, K, 4
formulated for the provability predicate are known as Löb’s derivability
conditions. See Boolos (1993) for more information.
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Weaker re�ection

One could try to escape Montague’s paradox by postulating re�ection
only for certain sentences, eg:



Weaker re�ection

�eorem

K4 is inconsistent with the scheme NNφ → φ.�e same holds for
NNNφ → φ etc.

Proof.

A ⊢γ ↔ ¬NNγ

A ⊢NNγ → γ assumption

A ⊢¬NNγ two preceding lines
A ⊢γ �rst line
A ⊢Nγ NEC

A ⊢NNγ 4

⊣
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Internal inconsistency

Plain inconsistency is not the only way a system can fail to acceptable.
“Internal” inconsistency is almost as startling. Let � be some �xed
logical contradiction, e.g., ¬ /= ¬. A theory is said to be internally
inconsistent (with respect to N) if and only ifA ⊢ N�.

�eorem (�omason 1980)

K4 plus the scheme NNφ → φ is internally inconsistent.

Proof.
One runs the proof of Montague’s theorem in the scope of N . ⊣
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Löb’s theorem

Now I want to generalise the question: for which sentences can we have
Nφ → φ?

�eorem (Löb’s theorem)

K4 ⊢ NNφ → φ → Nφ

�e corresponding rule follows as well:

�eorem
If K4 ⊢ Nφ → φ, then K4 ⊢ φ

�us in the context of K4 adding Nφ → φ makes φ itself provable.
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If K4 ⊢ Nφ → φ, then K4 ⊢ φ

�us in the context of K4 adding Nφ → φ makes φ itself provable.



Löb’s theorem: the proof

Proof.

γ ↔ (Nγ → φ) diagonalization

Nγ → NNγ → φ K

Nγ → NNγ → Nφ K and NEC
Nγ → Nφ 4
(Nφ → φ)→ (Nγ → φ)

(Nφ → φ)→ γ �rst line

N(Nφ → φ)→ γ NEC

N(Nφ → φ)→ Nγ K

N(Nφ → φ)→ Nφ line 4

⊣



Gödel’s second theorem

Now �x a contradiction, for instance 0 /= 0 and call it �.

�eorem (Gödel’s second theorem)

K4 is inconsistent with ¬N�.�us K4 /⊢ ¬N� if K4 is consistent.

�ere is also a formalized version of Gödel’s second incompleteness
theorem, which can easily be derived from Löb’s theorem.

�eorem (Gödel’s second theorem formalized)

K4 ⊢ N� ∨ ¬N¬N�.
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