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Last time I proved that the (formalisation of the) following sentence
cannot be proved in TB:

For all sentences (of the language without the new truth predicate): the
sentence is not true i� the negation of the sentence is true.

But we cannot prove this from the Tarski-biconditionals: in any given
argument we can use only �nitely many of them, but the generalisation
requires all of them (Tarski gave a formal proof and rejected TB
because of its deductive weakness).



To get a stronger theory of truth we could just add all required
generalizations as axioms to the syntax theory. �e new theory should
be stronger than TB.

Of course the new axioms should not only include

For all sentences (of the language without the new truth predicate): the
sentence is not true i� the negation of the sentence is true.

but also corresponding axioms for other connectives and quanti�ers.
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For instance, we would like to have. Sentences are always understood in
the sense of sentences of the original language without the new truth
predicate:

1 An identity sentence s = t is true i� s and t denote the same thing
(where s and t are closed terms) of the language; and so on for
further predicates of L

2 A negation of a sentence is true i� the sentence is not true.
3 A conjunction is true i� both conjuncts are true.
4 A sentence ‘Everything is A’ is true i� the result of applying A to

any name is true.

�e last clause uses a substitutional interpretation of quanti�cation,
which shouldn’t matter if names for all objects are available.

All this can be written down more formally.
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If we assume that truth is a new (previously unused) predicate, we add
the (formalisations of the) following axioms as axioms for truth:

De�nition
1 A sentence s = t is true i� the value of s is the value of t, where s

and t are closed terms of the language; and so on for further
predicates of L

2 A negated L-sentence ¬φ is true i� φ is not true.
3 A conditional φ → ψ is true i� φ is false or and ψ is true (φ and ψ

are sentences of L)
4 A universally quanti�ed L-sentence ∀xφ(x) is true i� φ(e) for all

objects e.

For the last axiom it’s assumed that there are only expressions in the
domain of our standard model (or that e is the standard name for e,
whatever e is).
In the formal language we have ¬ and→ as connectives and ∀ as
quanti�er symbol.
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Adding these axioms toA yields a theory o�en known at CT↾
(‘compositional truth’). Here I’ll call itD.



I’ll now turn these axioms into a formal theory. You can actually skip
the pages up to the de�nition ofD.
If you prefer to skip the bad formal stu� click here. I’ll probably do the
same in the lecture, but I thought I include it for the sake of those who
want to see the details.

Before formalising the de�nition of truth for L-sentences I need more
expressive power inA. �is is actually the hard part. I apologize. . .
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Quantifying into quotational context is notoriously problematic.
Occurrences of variables within quotation marks cannot be bound from
‘outside’. For instance, the quanti�er ∀v is not binding into the
overlined expression: ∀v ◻ v = v. In some cases, however, it is possible
to bind quoted variables in a sense to be explained.



Assume ◻ is read as ‘necessary’ and we want to say that every
expression is necessarily identical with itself, we cannot do this by
∀v ◻ v = v, but by saying the following:

For all expressions e: If we replace in the formula v = v every
occurrence of v by the quotational constant for e, then the
resulting sentence is necessary.

�is can be formalized by the following expression:

∀v ◻ sub(qv, v, v = v)

From this we can derive, for instance, ◻¬ = ¬ inA.
�e trick can be generalized. Assume φ(x) is a formula with no bound

occurrences of the variable x, then we abbreviate by φ( ●x) the complex
term

sub(qx , x , φ(x))



Values

I assume from now on that the language ofA contains also a unary
function symbol val and thatA proves the following equations:

Additional Axiom
val(t) = e if and only if t denotes a term denoting the expression denoted
by e in the standard model.

val represents the function that gives applied to a term of the language
it’s value, ie, he object denoted by that term.

Example

A ⊢ val¬ = ¬ translated into the metalanguage:
‘the value of ‘¬’ is ‘¬’’.
A ⊢ val q∀¬ = ∀¬, so val disquotes terms (but not sentences).
A ⊢ val q(¬⌢∀∀) = ¬∀∀
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More predicates

I need a predicate expressing that an object is a sentence of L:
Additional Axiom
A ⊢ Sent(t) if and only if t is a term denoting a sentence in the standard
model.

Example

A ⊢ Sent(∀v v = v)
A ⊢ Sent(val∀v v = v)
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More dots

In the following I’ll use Feferman’s dot notation extensively. I want to
express inA ‘the negation of’, ‘the conjunction of . . . and . . . ’, ‘the
universal quanti�cation of . . . with respect to variable . . . ’.

�ese function expressions can be introduced as new axiom or they can
be de�ned, eg:

De�nition

x=. y def= x⌢=⌢y
¬. x def= ¬⌢x
x→. y def= (⌢x⌢→⌢y⌢)
∀. xy def= ∀⌢x⌢y
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De�nition
�e theoryD is given by all axioms ofA and the following axioms:

1 ∀x∀y(ClT(x)∧ClT(y)→(T(x=. y)↔val(x)=val(y)))
A sentence s = t is true i� the value of s is the value of t, where s
and t are closed terms of the language.

2 ∀x(ClT(x) → (T(Sent(x). ) ↔ Sent(val(x))))
and so on for further predicates of L. . .

3 ∀x(Sent(x) → (T¬. x ↔ ¬Tx))
A negated L-sentence ¬φ is true i� φ is not true.

4 ∀x∀y(Sent(x)∧Sent(y) → (T(x→. y)↔(Tx→Ty))
A conditional φ → ψ is true i� φ is false or and ψ is true (φ and ψ
are sentences of L)

5 ∀x∀y(Sent(∀. xy) → (T(∀. xy) ↔ ∀zTsub(y, x , qz)))
A universally quanti�ed L-sentence ∀xφ(x) is true i� φ(e) for all
objects e.
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�e grey comments on the previous slide are merely the metatheoretic
counterparts of the axioms; here is the pure version:
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Comments on the axioms of D

T is not a symbol of L: any axiom schemata ofA contains only
substitution instances from L, that is, without T .
�e last axiom makes use of ‘quantifying in’.
Additional axioms for every predicate symbol of L have to be
added. Here I should say something about schematic theories and
list de�nitions. . .
�e axioms capture a compositional conception of truth.
I suppose that these are the axioms for truth Davidson alluded to
when talking about turning the de�nitional clauses of truth into
axioms, although there are some open questions. . .
D proves many of the desired generalisations such as
∀x(Sent(x) → (Tx ∨ T¬. x))
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De�ationism and conservativeness

Some de�ationists wrt truth are keen on a theory of truth that proves
generalisations but that is at the same time ‘insubstantial’ in the sense
that it is still conservative over the base theoryA, that is, it doesn’t prove
any new sentences in the original language L (ie, the language without
T) (cf Shapiro (1998), Field (1999), Halbach (1999), Ketland (1999)).

So we would like to show for all sentences φ of L:
If is provable inD, then φ is already provable inA.
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So we would like to show that adding the following sentences as axioms
doesn’t allow us to prove more sentences in the language L without the
truth predicate.

1 A sentence s = t is true i� the value of s is the value of t, where s
and t are closed terms of the language; and so on for further
predicates of L

2 A negated L-sentence ¬φ is true i� φ is not true.
3 A conditional φ → ψ is true i� φ is false or and ψ is true (φ and ψ

are sentences of L)
4 A universally quanti�ed L-sentence ∀xφ(x) is true i� φ(e) for all

objects e.
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Surprisingly this is hard. �ere are incorrect proofs by famous and less
famous logicians for this claim (I’m one of the latter).

In fact, conservativeness follows from a result proved by Kotlarski et al.
(1981). Graham Leigh, Ali Enyat and Albert Visser might have proofs as
well.

�us we still cannot prove any new truth-free sentences.

�e situation changes if we apply additional syntactic axioms that allow
us to prove the all theorems ofD are true. In this case conservativeness
is lost.
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In the theoryD we have only �nitely many axioms for truth. �is is in
contrast to TB, which has in�nitely many axioms for truth.

�is was the main reason for Davidson to preferD over TB and to
emphasize the importance of compositionality.
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�ere are still many natural generalizations that are not provable inD.
For instance, if A is a trivially true sentence, one would like to prove
that all sentences

A and A and A and A and . . .

with arbitrarily many As are true.
More formally, one would like to prove:

All sentences of the form
∀=∀ ∧ ∀=∀ ∧ . . . are true.

But this is not provable inD.



However, one can add induction principles. �is leads to a stronger
theory CT, which is no longer conservative over the basic theory of
syntax.

I won’t go into details here and turn to other theories of truth.
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�e truth predicate ofD still applies only to sentences without the truth
predicate. Can we strengthen the axioms so that they do apply also to
such sentences?

One way is to add further truth predicate T1, T2,. . . that are added in the
same way as T . �is gives Tarski’s hierarchy of languages.

So we have the language L without a truth predicate, then a language
with the truth predicate T1, then a language with T1 and T2, then a
language with T1, T2 and T3, and so on. Each new predicate is
axiomatized as the truth predicate for the preceding language.
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�e theory FS↾ is given by all axioms ofA plus the following
truth-theoretic axioms and the rule below:

De�nition
1 A sentence s = t is true i� the value of s is the value of t, where s

and t are closed terms of the language; and so on for further
predicates of L

2 A negated sentence ¬φ is true i� φ is not true (φ is a sentence
possibly containing T).

3 A conditional φ → ψ is true i� φ is false or and ψ is true (φ and ψ
are sentences possibly containing T)

4 A universally quanti�ed ∀xφ(x) is true i� φ(e) for all objects e
(φ(x) is a formula possibly containing T).

rule: If you have proved a sentence φ, you may infer that φ is true.
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So FS↾ is likeD except that we have removed the restriction to T-free
sentences.

FS↾ proves many sentences with iterated applications of T .

FS↾ is ω-inconsistent.
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